PROBLEM SET 3 - MODEL THEORY

Philipp Schlicht and Philipp Lücke Mathematisches Institut, Universität Bonn, Winter 2017-18

Problem 11. (3 points) Show that any two finite elementarily equivalent \mathcal{L} -structures \mathbb{M} and \mathbb{N} in a finite language \mathcal{L} are isomorphic.

Problem 12. (8 points) Decide if the following classes of \mathcal{L} -structures for $\mathcal{L} = \{\cdot, 1\}$ are axiomatizable by giving an axiomatization or proving that it is not by using either the compactness theorem or ultrapowers. Let G^n

- (a) Let \mathcal{K} be the class of groups G with $\bigcap_{n \in \mathbb{N}} G^n = \{1\}$, where $G^n = \{g^n \mid n \in \mathbb{N}\}$ denotes the set of n^{th} powers of elements of G.
- (b) Let \mathcal{K} be the class of torsion free groups.
- (c) Let \mathcal{K} be the class of torsion groups, i.e. where for every $g \in G$ there is some n > 0 with $g^n = 1$.
- (d) Let K be the class of free groups. *Hint: use the fact that no free group is abelian unless it is isomorphic to* (Z, 0, +, −).

Problem 13. (4 points) Prove the compactness theorem by using ultrapowers: every finitely satisfiable theory T is satisfiable. *Hint: take as index set the set I of all finite subsets of* T *and choose an ultrafilter* U *on* I *that contains for every* $\varphi \in T$ *the set* $I_{\varphi} = \{S \in I \mid \varphi \in S\}$; you can use the fact that every filter can be extended to an ultrafilter.

Problem 14. (5 points) An \mathcal{L} -theory T is called *universal* if it has the same models as the set $T_{\forall} = \{\varphi \in \text{Sent}_{\mathcal{L}} \mid \varphi \text{ is universal and } T \models \varphi\}$ of its universal consequences. A theory T is called *downwards absolute* if for any substructure of any model \mathbb{M} of T is also a model of T. Moreover, the *atomic diagram* $\text{Diag}(\mathbb{M})$ of an \mathcal{L} -structure $\mathbb{M} = (M, \ldots)$ is the set of atomic \mathcal{L}_M -sentences that hold in \mathbb{M} . Prove the following statements.

- (a) Every universal theory is downwards absolute.
- (b) If T is downwards absolute, then for any model $\mathbb{M} = (M, \ldots)$ of T_{\forall} , the theory $T \cup \text{Diag}(\mathbb{M})$ is finitely satisfiable.
- (c) Every downwards absolute theory is universal.

Please submit your solutions in the lecture on November 9.